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Abstract

A cyclindrical cavity operated in the TE ;3 mode was
used for excitation of the hyperfine transition in an optically
pumped cesium beam spectrometer. In the configuration
we used the atoms see the rf H-field reverse its direction
twice. The observed lineshapes show an interference
structure similar to Ramsey interference. Theoretically
derived lineshapes are in good agreement with the
observations. A comparison is made between these
lineshapes and corresponding Ramsey lineshapes. The
effects of phase variations within the cavity are also
discussed briefly.

Introduction

A prototype atomic beam device was set up to test
optical pumping as a means of state preparation and
detection. Since the magnetic field in this device is
longitudinal, a suitable Ramsey-style microwave excitation
structure was not readily available. Instead, a simple
cylindrical cavity was substituted. This cavity was operated
in the TE; 3 mode with the atomic beam passing along the
cylindrical axis. The microwave magnetic field amplitude
seen by the atoms then has the form of three half periods
of a sine wave (see Fig. 1). We expected this form of
excitation would exhibit line narrowing similar to that
achieved with Ramsey excitation.

Experiment

The prototype beam tube was made as follows.
The vacuum chamber was assembled from commercial
vacuum components and pumped with a turbo molecular
pump. The cesium oven was a piece of 3/8 inch copper

*Contribution of the USS. Government, not subject to
copyright.

tube with a 3 mm graphite aperture. This type of oven
does not last long because of the absorption of cesium by
graphite, but it is simple to make and delivers a fairly well
collimated beam. The laser beams enter and exit the
chamber through near normal incidence, high quality anti-
reflection coated windows epoxied to the tube. The
fluorescence collection optics are identical to those
developed for NIST-7 [1]. The C-field coil is wound on an
aluminum cylinder with a diameter of about 20 cm. There
is a single layer of magnetic shielding with no end caps.
The separation of the optical pumping region from the
detection region is 25 cm.

The cavity and its mode pattern are shown
schematically in Fig. 1. The cavity is made of 2 inch
copper plumbing pipe with brass end plugs. The latter
have a 5 mm axial hole for the atomic beam passage and
a A/4 mode filter to discriminate against the degenerate
TM and lower modes. The cavity is fed in the center by a
small loop in the end of the 0.087 inch coaxial feed line.
There is no provision for coupling adjustment. The
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Figure 1. Schematic of TE;3 mode showing longitudinal
magnetic field amplitude in the three excitation zones.
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resonant frequency was tuned by adjusting the position of
the end plugs before they were fixed in place. The final
tuning is done by temperature adjustment. The cavity has
a loaded Q of about 20 000.

The experiments were done with a single diode
laser narrowed by optical feed-back [2] and locked to a
saturated absorption feature in a separate cesium cell. A
second optical frequency was synthesized from the laser by
an acousto-optic modulator. This allowed us to pump on
the F = 4 -F’= 4 transition and detect on the F = 4 -
F= 5 cycling transition.

Representative experimental lineshapes for the
clock resonance, (F = 3, m = 0to F = 4, m = 0), are
shown in Figs. 2a and 3a together with theoretical
lineshapes Figs. 2b and 3b for the same conditions.
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Figure 2. Experimental(a) and theoretical(b) lineshapes
obtained at optimum power.
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Figure 3. Experimental(a) and theoretical(b) lineshapes
obtained at 6 dB below optimum power.

Theory

In the notation of Ramsey [3, Chap. V3], the
evolution of the probability amplitudes of the two hyperfine
states is given by the time-dependent Schrodinger equation

i(d/dC,(t) - be(de''C ),
iddDC ) - bgt)e 'C, (@) + @ ,C 00,

(1)

with the initial conditions C_(0) = 1 and C_(0) = 0.

We have chosen the energy of the initial state p to be zero.
The rotating field approximation has been made. The Rabi
frequency 2b is proportional to the microwave magnetic
field amplitude, @ is the microwave angular frequency, and
® is the atomic resonance frequency. The function g(t)
represents the time dependence of the microwave field
amplitude. For the TE0 13 mode g(t) is shown in Fig. 1
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and is given by (m/2)sin(wt/t), where t is the transit
time through one of the three zones, and g is normalized
so that j'a g(tdt = <.

Weak excitation

The theory is most easily developed and
understood in the limit of weak excitation. To first order
inb, C P remains equal to 1. The probability amplitude for
excitation after an atom has traversed n zones is then

C, - -ibe " G,(A) )

where

= ¢ -e™™*cosnm)
(AZtZ_RZ)

®)

G, ()= [ g(edr--

and A = Wy is the detuning from resonance of the
microwave field. G is well-behaved at At = *x since
both numerator and denominator vanish together for
integer n. If we consider the function g(t) to be zero
outside the range O<t<nt , then the integration limits in
(3) can be extended to plus and minus infinity and Gn(l)
becomes the Fourier transform of g(t). The transition
probability becomes

2422 cos’(nit/f2)
(1212_1‘2)2
4)

for n odd. For n even, replace cos(nAt/2) by
sin(nAt/2). The result (4) is shown in Fig. 4 for n=3.

With the aid of some trigonometric identities we can factor
the transition probability for one zone of excitation from

@

P - b? |G, P -

P, - |F P, ®

For n = 3 the remaining factor,

F3 = 2cosAt-1 = e*"-1 + e—ih’ ©

.14 A\

e
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is the sum of three exponentials. These exponentials relate
the transition amplitude in the second and third zones to
that in the first zone by phases that correspond to the
difference in phase evolution between the field and the
state q. These phases interfere to either destroy or
enhance the basic probability P,. Hence, we refer to F as
the interference factor. For At = m, F3 = -3 and P3 is
enhanced nine times over P;. This enhancement is shown
by the strong side peaks in Fig. 4. The interference factor
also narrows the central peak and introduces additional
zeros.

Note that if no excitation took place in the second
zone, we would have a form of Ramsey excitation with the
drift time T=<. The second term in (6) would then be
missing and (5) would reduce to

P, - (2cosAt)’P,, )

the usual expression for weak two-zone Ramsey excitation
[3, Chap. V.4]. This lineshape, also shown in Fig. 4, has a
central peak 1.4 times broader than the central peak for
three zone excitation. It also has prominent side peaks, but
they are not enhanced above the central peak.

-18.8

Figure 4. Comparison of lineshapes from three-zone
excitation (solid line) with Ramsey excitation (dashed line)
at low power with single velocity atoms.

The results (4) and (5) also apply to values of n
larger than 3 corresponding to excitation by a TE;; . mode.
The interference factor F_ becomes a polynomial in cosAt
related to the Tschebyscheff polynomials. The lineshape
has very strong, narrow side peaks for single-velocity atoms.
The central peak has a width Av = k /2nt where k; =
238, kg = 104, and k approaches unity for n large. A
corresponding Ramsey excitation would include excitation
by only the first and last zones with a drift time between
excitation zones T = (n-2)t. For such a Ramsey excitation



(7) holds with At replaced by (n-1)At/2 in the argument
of the cosine. The central peak has a width Avn =q,
/2(n-1)T where q3 = 98 and q_ approaches unity for n
larger. Hence for n large the multi-zone excitation and

corresponding Ramsey excitation yield lineshapes with
similar widths.

Strong excitation

If Y(t) represents the state vector whose
components are C_(t) and C_(t), then the time evolution

of ¥ (t) can be expressed by a 3 x 2 evolution matrix U(t,ty)
such that

¥(@) - Uty v(y. ®

For three-zone excitation the evolution can be broken down
into the product of evolutions across each zone:

¥(31) - UBt,2t) UQRt,7) U(x,0) $(0).
®)

In terms of the solution of (1) at t =
evolution matrix

T we have the

C, (v —C,,(*c)"e".“"’t (10)

U(z,0) - ,
=0 C,(x) C(x)e

U(2%,t) and U(3t,27) are the same as U(t,0) except
that C_(t) is replaced by —C () ®T and C_(t)e2®"
respectively. Thus, knowing the solution of (1) for the first
excitation zone allows us to easily find the solution for
several zones by matrix multiplication. The results for the
transition probability are

P, = |Cq(1:)|2 for one zone,
Py = 4y2’P1 for two zones,
Py = (1-4y2)?’P1 for three zones, 11)

where y = Im[Cp(':) exp(iAt/2)].

The one-zone transition probability P, is again a factor in
the multi-zone transition probability. In the weak excitation
limit C_(t) is unity so that y = sin(At/2) in agreement
with (6). For stronger excitation Cp(':) decreases, making
the side peaks less prominent.

For the actual sine-wave form of g(t) the
Schrodinger equation (1) was integrated numerically across
one zone to find Y(t). The transition probability for 1, 2,
and 3 zones was then found from the relations (11). A
sample result is plotted in Fig. 5, for optimum power.
Saturation reduces the value of y in (11) allowing the
central peak to broaden and reducing the side peaks.
Also shown in Fig. 5 is the corresponding Ramsey lineshape
for two zones of excitation. The central Ramsey peak is
now only 0.6 times as wide as for three zone excitation.
Saturation does not affect
Ramsey excitation.

the interference factor for
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Figure 5. Comparison of lineshapes from three-zone

excitation (solid line) with Ramsey excitations (dashed line)
at optimum power with single velocity atoms.

Velocity Average

In the experimental situation T is not fixed, but
has a broad distribution of values corresponding to the
velocity distribution of atoms in the beam. Since the
position of the side lobes, but not the central peak,
depends on <t, the side lobes are greatly reduced and
broadened by averaging over T values. A thermal velocity
distribution weighted by 1/v for detection by a cycling
transition [4] was used to average the numerical results.
Figure 2b shows the resulting calculated lineshape for
optimum excitation for comparison with the experimental
curve in Fig. 2a. At weaker excitation levels, the central
peak shrinks and narrows faster than the side lobes as
shown in Figs. 3a and 3b. At still lower excitation the
central peak becomes only half as high as the side lobes.
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Theoretical predictions are in agreement with experimental
observations.

Cavity Phase Variations

Spatial phase variations within the cavity can lead
to frequency biases, in analogy with the end-to-end phase
shift in Ramsey cavities. Only phase variations associated
with modes of a symmetry different from the desired one
can produce a bias [5]. In our cavity the closest such
modes are TE;;, and TE( 4 However, since they
resonate about 1.1 GHz away from the TE;;3 mode and
have very high Q, the resulting frequency bias would be
very small even if the cavity feed excited them, which it is
not designed to do. An experimental search was made for

- other modes using probes within the cavity. The only
resonances seen in our cavity other than the desired one
were those of the 'I‘EO11 and TE015 modes, which have a
symmetry that will not produce frequency shifts.
Furthermore, the degenerate TM, ;3 mode and the lower
TE,, modes were not observed, indicating that the mode
filter works well. In conclusion, we feel that spatial phase
variations can be analyzed and shown not to be a problem
in this type of cavity.
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